Main sponsor

v Engineering Business Performance

Micro Services - Java the Unix way

33rd Degree Conference ‘ :(9-2'(16Ma;cllr 2(:’12
rakow, Polan

James Lewis
Senior Engineer / Principal Consultant / TAB member

Your Storyteller today

mnarog,‘ R

http://www.thoughtworks.com/radar

epar ' ThoughtWorks
1 nical Advisory Board

August 2010

ThoughtWorks

Copyrght © 2011 Thosghtworks

Tools

Techmlagy Radar ®

A19. B your own raax 2. A43. Seieniim 2 wsang of
A20. Evont AY's A3t cr mobde:
A21 Evomt drven business Imeligence 32, Infastructue 33 code 44. Deracioud
22. Sman syEwms A G 45. vagaee
A23.Swort sourcng A 34_Caching roverse prages 46. AT
424 Decizon covee B 35. Spurk A 47, Quory Mcblle
75 Scum cericamon 26. Morcunal A48
26. hasad intpgrason 7. Massage buses wihout A 49, Sorar
A27. Procecuse crented Integrason sTaTs 4 50. Open source bl wols
A28, Feature tanching 38. NoSQU A
429, Manual NasTuClre management 39, Next jen st DO 452 Cross platim mobée Dokis
A£0. New Relic beyend Ralls 53. £S3

A £2. Powershel

A=
4 4 s
4
Languages
665, watrc 74, Javascript 35 2 Nt class nguage
66. OpenStack
67. Nooe js T76. SASS, SCSS, and LESS
68 OAun T7. ML
69. GPGPU 78. Domain-spacic anguages
79. Scala
AT2. GWT AB1. Copre
AT3. Java poral seevers. 828
43 8um of Iva
ABZ_ Logc In sured procecures

Technology Racar - Juy 2011 - 3

Techniques

If you aro wondoring *What comes anor aglio?,” you
SNOUId 100K towards continuous dolivery. Whilo

as code,
auomation system I
aways reasy or ProouCtion. It IS 300U UENIENING your
feeanack 100ps, and NOL PUTINg off unul the
end. Continuous dedvery IS not e same as continuous
deployment, 0
proguction. deivery IS NOL 3 COWDOY SOW.
T PULS YOu In Charg of your environment.
an pick and choose What and when 10

Technlogy Radar ®

0no of the Eals of SOA has boen 1 decoupio SeMces
by exchanging human- readabio business documents
Instead of programming

apioy. If you Tink you've nalled agha dgevelopment,
but aren’t consicarng Now 1o
aolvery, you really haven't even started.

e and batwoon
Govolopmant and IT oparations ghes Us More offocive
X and tion systoms that aro moro stabio

goiivery

moment, which might In fact bo up-front for sama
gocisions.

RESTIU APIs have become standard In our ndustry.

cheaply ana gves the cllant the power 10 guaranioe
oolivery.

Copyagit © 2011 Thosghtworks.

All 100 Often CaChing IS an aNEMNOUENT USed 10 30dress
probiems with 3 biankat approach and
common cacho IIRTme. This 03 1o ISSU0s and
workarounds. Tho “Ume valuo™ of Information s
Inheronty linked 10 the busness ana henco
NECaS 0 b CAPLNEd 3t 1O SAME UM 3 other

A i v e s

'—.=‘=- = et

——— A A e e T
— —r—

A Wy il

e _*_:EI—-‘ _E—t -
2 /&= AT

A AT e

Tools

Technology Radar (O

A1l Pogessve enhancement A 19, Buid your own 0. A 43. Selenum 2 wsang of
A2, Astomae datibame deployment A 20. Event AY's A31.Gr mobide wedstes
3. Patom A21 Dvont dnven business Inoligonce 32. Infrastructune 38 cooe 44. Detacoud
4. Dwokzorary Gotase 22. Sman syswms A G 45, Vagare
6. Emogen A23.Swort sourcng A 34_Caching roverse prages 46. AT
6. VISLGizanon anG meTes. A 24 Decison anven BI 35. Splurk AAT. Quary Mctlie
7. Coong amhiects 3 26. Morcunal A48
AB. Poksionary FThtecim 26. nasad IntRgrason 37. Message buses wihout A 49, Sorar
A9. DevOps A27. Procedure crented integrason ST A 50. Open souce bl oS
A 10. Smgle partrmarce A28 Feguse trarching 38. NoSQU Graze
A 11, Comruous osivery A 29 Manal nastucure management 39 Next gen 18st 0ok A 52, Cross pamom mooie DORES:
. CONCUITENCY Z0STacTons A £0. New Relc bayond Rals 53.£S3
ana patems A4LTB A 54, VCS wan “Impict workfiow”™
ACCEDIENCe 18SL Of PUmeys. A £2. Powershel A 55. Coce In configuranon
14. Catagonzanon &
Of technical 02t
Conmnuous:
16. Capadiity mooeing.] A
A17. Thoughtul caching e
A 18 Inrave dxa wesehiusng. ~ ’Q 4 A New or Moved
A £ & ® Nochange
L7 4 e? s & N
2
LN 2f o A
H 4 e
LIPS A
2 A H e 4 4
a4 4 00 2 o4 %
g 4 0% 3
E s B
H Q A= e 4 4
: 0 . *
4
H A
2
4 s A A
-
Platforms Languages
56 sy 65. watnc 74, Javascript 35 3 st ciass nguage
57. ATOM 66. Opensuack
B8 67. Nooe s T6. SASS, SCSS, and LESS
ABQ ANS 68, QAun 7.
A 60 GPGPU 78 Domarn spec: nguages
61 Herowu 79. Scala
62. Taer Gomery Pa) AB0. Cofiescrpt
A63. OMne moble webapps (USLNIMIS) A72. GWT AB1 Copre
AS4 AT3. Java ponal senvers 82 F#
ABZ_ Logic I swred procedures

Copyrght © 2011 Thosghtworks

Techniques

If you aro wondering "What comes aftor aglie?,” you
Should 100K towards continuous dolivery. Whilo
your development Processes may bo fully opumized,
R St MIgHt taKe Your Ofganization weeks of months
10 get a single Change INto Procuction. CONUNUOUS
Gailvery foCUSES 0N MEXMIZING AULOMALON NCUXING
as code,
mmmmwmmms
aways ready for your
mmwmwmmmmlm

Techmelogy Radar (&)

0ne of the goals of SOA has been 10 decoupie services

1L pULS You N Charge of your production environment. Iogacy system

€an pick and choose WNat and when 1
apioy. If you Think you've nalled agha development, All 100 Often caching Is an aRerNougt used 10 Adress
but aren’t consicarng NOW 10 achieve continuous parformance probioms with 3 bianket approach and

and IT operations gvos Us more ofiective NEads t0 bo capiured at tho Same tme as other
collvery and procuction that aro moro stabio roqui belleve shouid
and maintainablo. Creating a DevOps culiure roquiros be acdressed early In the project and not Just treated
amention to team A s a last minute o
ines, and INcentves - Ieading to joint responsibiiy
for taster and safer delvery. We Starting performance tests 1ate In a project Is risky and
Decause we cannot see any situation where costy. Very simplke lests that exarcise key

DavOps

aention In this area will NOt have 3 positve benant. parts of the systam, run on a regular basis, are good

@N0UEN 1O rack rends, SO We Can react If we see a

In Conast 1o waaitonal up-Tront,
architectural

moment, which might In fact bo up-front for some
gocisions.

RESTIU APIs have bacome standard In our naustry. -

A 000 REST API provides a simpie, ighwelght means A A vt
of bullding customl and Integrations. ra,

a lot of the quick, high Intogrations we'd ke A

10 bulid require when someting fpeopres——

= iy 1=
INtegrations often fequire N0 More tan 20 or 30 lines —ra .4 A wpue
of cooe. Oen event AP'S 13ka e f0rm of 3 “WeD hook™ Temem——E SR e (1

or Calback mechanism, DUT CON'L be a¥aid of USNE 3 A alin—

cheaply ana ges The Cliant 1o Power 10 Suaranioe
oolivery.

Copyngit © 2011 ThoughtWorks

Micro-services

Embedded Servlet Containers

Or how we designed and nearly built a Resource Oriented, Event
Driven System out of applications about 1000 lines long...

WHAT | DID LAST SUMMER

In the beginning...

* There was a new product being developed
by an organisation in London

* The organisation had gathered their list of
high level requirements

* And they asked ThoughtWorks if we could
help them design and build it...

So we took a look at their
requirements

 Me and my mates at ThoughtWorks

* Worked out to be about 5000 points worth
of User Stories

— At 7 points per pair of developers per week

Comple‘l‘& lt‘ e 7

Half way 7 S

Heat
death of
the
Universe

opened End dab’ Cons hell ¢]
the box 1 come freezes P'gs f‘1

Tip 1
Divide and conquer

Start on the outside and model
business capabilities

{

D D) | Product Product | Product | | Product D
Real Time and Mobile CMS Ecommerce Demo External
Analytics Batch Interfaces Site Reporting
Product
2 1] 2]
3rd party Gateway SMS Gateway
Product Product | Product Product
Config Call Centre Marketing Reporting
Application Application Application Application |
| 2]
2] 2 I 2] Il
A/ E Services Config Services Services User Services Product Data
User / Ro%etl E $:| $:| ProductE|
Repository Raw Txn Store Account Store Member Store Repository —
Access and Entitlement Product / static Catalog |
]
@ Config al g] =@ g] ?
Batch Lifec Metadat: Product Reportin
services servces Rules Engine Services
Rules Config
Batch Interface $:| $ -
Config / Application Reponin?
metadata store Rules store datastore
Metadata Rules Engine Reporting Services

Each small box represents a capability,

composed of one or more services

* The only way we could hit anything like the
timescales required was to scale the
programme quickly

* And that meant multiple teams in multiple
workstreams

And there were some, umm,
interesting non-functional
requirements too

aD D) | Product Product | Product | | Product D
Real Time and Mobile CMS Ecommerce Demo External
Analytics Batch Interfaces Site Reporting
Product
2 1] 2]
3rd party Gateway SMS Gateway
Product Product | Product Product
Config Call Centre Marketing Reporting
Application Application Application Application |
| 2]
|8 Z i, =1 - g |4
A/ E Services Config Ser\Ms Services User Services Product Data
User / Ro%etl E $:| $:| Product$:|
Repository Txn Store Account Store Member Store Repository —
Access and Entitlement Product / static Catalog |

Config a gl z] g] ? g]
Batch LifeG Metadat Product Reportin
services servces Rules Engine : Services
Batch Ipfface 2] g | Rules Config
Config / Application Reportin
metadata store Rules store datastore
Metadata Rules Engine Reporting Services

Had to handle 1000TPS with a 99t percentile latency of < 2 seconds

{

Access and Entitlement

£]

Batch Life(%|

services

Batch Interface

Product / static Catalog

Config a
Metadat:
servces

2

Config /
metadata store

Metadata

Al

Rules Engine

2

Rules store

2

RulesConfig
ApplicXi

Rules Engine

erportin?|

Services

Reportin?|

datastore

Reporting Services

aD D) | Product Product | Product | | Product D
Real Time and Mobile CMS Ecommerce Demo External
Analytics Batch Interfaces Site Reporting
Product
2 1] 2]
3rd party Gateway SMS Gateway
Product Product | Product Product
Config Call Centre Marketing Reporting
Application Application Application Application |
1]
|8 Z i, =1 - g |4
A/ E Services Config Services Services Use&ervices Product Data
User / Ro%etl E $:| $:| Product$:|
Repository Raw Txn Store Account Store Member Sre Repository —

Support a user base of 100 million active customers

Real Time and Mobile CMS Ecommerce Demo External
Batch Interfaces Site Reporting

aD D) | Product Product | Product | | Product D
Analytics

Product
2 1] 2]
3rd party Gateway SMS Gateway
Product Product | Product Product
Config Call Centre Marketing Reporting
Application Application Application Application |
| 2]
2] 2 I 2] Il
A/ E Services Config Services Services User Services Product Data
User / Ro%etl E $:| $:| ProductE|
Repository Txn Store Account Store Member Store Repository —
Access and Entitlement Product / static Catalog |
@ ; Config al g] =@ g] ? 2]
Batch Lifec Metadat: Product Reportin
services / servces Rules Engine i Services
Batch Inyefface =] Z] jitlics Coniid
Config | Application Reportin
metadata store Rules store datastore
Metadata Rules Engine Reporting Services

Needed to support bulk loads of 30 — 90 million records nightly
(and keep them for six months)

Did | mention PCI Level 1?

Finally, this is a product build.

So it needed to be modular /
<cough> “infinitely configurable”

And deployable on Cloud and Tin

The product need to to be...

« Performance

— fairly high throughput both transactional and batch
« Fault tolerant

— One thing about the cloud, you are designing for failure right?
« Configurable

— On a per install or PaaS basis
« Portable

— Fortunately not to Windows...
« Maintainable

— over multiple versions and years
« Supporting big data sets

— Billions of transactions available
— Millions of customers available

and capable of being built quickly without sacrificing the other principles

Plus ¢a change, plus c'est la méme chose.

(The more things change the more they stay the same)

So, after five weeks we had broken the problem down into capabilties

Now we had to start scaling the teams to deliver these capabilities

Tip 2

Use Conway’s Law to structure teams

“...organizations which design systems ... are constrained to produce designs
which are copies of the communication structure of those organizations”

Melvin Conway, 1968

The first business capability - Users

* Responsible for creation and maintenance of
users in the system

— Up to 100 million of them per instance of the product

* Used by many clients with many usage patterns
— Call centre and website — CRUD

— Inbound batch files — CRUD x hundreds of thousands
per night

« Many downstream consumers of the data
— Fulfilment systems for example

Tip 3

The Last Responsible Moment

Don’t decide everything at the point you know least

We started with a business process...

EN?t | : Baich
Sx etrna Enrolment
ek Results File
Invalid
File .
4 Notify Sys
Admin Batch Failed
Apply rules
Batch File
/ﬁ: Send Letter
) Use
Link Account
\/
Invalid _ |:>
U Notify Sys
Admin

and noticed something funny...

/

=]

Batch
monitoring

User
Monitoring

Fulfilment
Monitoring

Account
Monitoring

Batch D

Event

T

Triggering

Bat
Processing
Service

File Structure
Validation

Results File
Creation

J=1
Batch Store

Monitoring

Services

Triggering

Triggering

v
User D
Collection
Triggering

Ad-hoc
Users

Triggering

(.

Member
Service

—

Triggering

Account
Service

FulfilmerD

Event

1

Triggering

(.

Fulfilment
Service

Address
Validation

User
Validation

User
Creation

a)

User Store

Rules Engine

a

Rules store

Account
Creation

Bank

Account Store

f=1

fulfilment

fulfilment

E—

Email

| know what you are thinking...

x

* Dan North coined the term Enterprise Night Bus...

Or yéu could use the web

F

REST In Practice

Tip 4

Be of the web, not behind the web

B -

~ RFC 5023 to be precise

/user-request

application/atom+json

/user-request/1223

1 Event

queue
—— Queue
processing
- engine

[User

1 Service

lusers/142 application/vnd.user+JSON

’

/users

/

and this is what we built

‘ /user-request
application/atom+json

/user-request/1223

Standard resource representations using well known web
standards — atom+json

lusers/142 application/vnd.user+JSON

—

/users

—

/user-request

L/ ‘ application/atom+json |
‘ /user-request/1223

Reified the request to create a user. Clients POST a request
to create a user as an entry to an atom collection.

lusers/142 ‘ application/vnd.user+JSON |
/users

/

Tip 5

If something is important, make it an
explicit part of your design

Reify
to convert into or regard as a concrete thing: to reify a
concept.

application/atom+json

‘ /user-request
‘ /user-request/1223

———
Event | Event

||
‘ queue - store

Event queue has the single responsibility of managing state
transitions for the request to create a user

— \ —
' Qd”%'- User | | User
1 Service P store

lusers/142 application/vnd.user+JSON

e —

/users

.

/user-request

b ‘ application/atom+json |
‘ /user-request/1223

Queue Processing Engine implemented the Competing
Consumer pattern using Conditional GET, PUT and Etags
against the atom collection exposed by the event queue

/users :

/user-request

‘ /user-request/1223

application/atom+json

‘ /users '

/user-request

L/ ‘ application/atom+json \
‘ /user-request/1223

After creation, representations of Users are available at
canonical locations in well defined formats and creation
events added to another atom collection

IAN/MNN A MNLIALIMA ENCEFANL L L LI/ AACI/MD

lusers/142 application/vnd.user+JSON
/

/users

e ———

Where they are available for consumption

by other downstream systems

=]

L} L}
Batch User Fulfilment Account
monitoring Monitoring Monitoring Monitoring M O n |t0 rl n g

(.

Monitoring

Services

Batch D N e
Event D - FquiImerD
User

|
I
- I
I
I

|

|

: T Collection \ Event

|

| T

|

| iaring /V \ — o 1

: Triggering Triggering Triggering Triggering Triggering riggering

Bat(_) e (. (I Ba__) Fu|fi|n§>

Processing Triggering Member Account S

Service

Rules Engine Service

Service Service

|
|
|
. g f] {]
|
|
! File Structure Address ;]
|
' Validation Validation Rules Engine Account fulfilment
I Creation
: Ad-hoc
: Users
J=1 [=1
Results File User Bank fulfilment
Creation Validation Rules store Account Store
J=1
User
Batch Store Creation
a
User Store

Our micro-services

» User Request Queue
— Forms the transactional boundary of the system

* Request Queue Processor

— Competing Consumer processes events on the
gqueue and POSTs them to

« User Service
— System of record for Users in the system
— Responsible for all state changes of those users
— Exposes events on those users to other systems

CHARACTERISTICS OF
MICRO-SERVICES

Small with a single responsibility

» Each application only does one thing

« Small enough to fit in your head

— James’ heuristic
— “If a class is bigger than my head then it is too
big”

« Small enough that you can throw them away
— Rewrite over Maintain

Containerless and installed as well
behaved Unix services

« Embedded web container
— Jetty / SimpleMind

— This has a lot of benefits for testing (inproctester for
example) and eases deployment

 Packaged as a single executable jar
— Along with their configuration
— And unix standard rc.d scripts

 |nstalled in the same way you would install httpd or
any other application

— Why recreate the wheel? Daemons seem to work ok for
everything else. Unless you are *special*?

Located in different VCS roots

Each application is completely separate

Software developers see similarities and abstractions
— And before you know it you have One Domain To Rule Them All

Domain Driven Design / Conways Law

— Domains in different bounded contexts should be distinct — and its ok to
have duplication

— Use physical separation to enforce this

There will be common code, but it should be library and
infrastructure code

— Treat it as you would any other open source library
— Stick it in a nexus repo somewhere and treat it as a binary dependency

Provisioned automatically

* The way to manage the complexity of
many small applications is declarative
provisioning
— UAT:

e 2 *service A, Load Balanced, Auto-Scaled
e 2 * service B, Load Balanced, Auto-Scaled
« 1 * database cluster

Status aware and auto-scaling

* What good is competing consumer if you only
have one consumer?

— We don’t want to wake Peter up at three in the
morning any more to start a new process

» Use watchdog processes to monitor in-app
status pages

— Each app exposes metrics about itself
— In our case, queue-depth for example

— This allows others services to auto-scale to meet
throughput requirements

A single capability composed of
many small applications and
exposing a uniform interface of Atom
Collections

How the capabilities form a product

They interact via the uniform

interface

e« HTTP
— Don't fight the battles already won
— Use no-brainer force multipliers like reverse proxies

« HATEOS
— Link relations drive state changes

— Its an anti-corruption layer that allows the capability to
evolve independently of its clients

« Standard media types
— Can be used by many different clients
— You can monitor it using a feed reader if you want...

atom+json / HTTP (AJOH)
Monitoring Reporting ﬂ
Capability Capability

(AJOH) (AJOH)

atom+XML// HTTP
User Fulfilment
Capability Capability
AJOH)

Capabilities poll waiting for events that they know how to deal
with. Forming an eventually consistent system

External
Suppliers

Tip 6

Favour service choreography over orchestration

atom+json / HTTP (AJOH)
Monitoring Reporting ﬂ
Capability Capability

| Each is entirely decoupled from it’s clients, scalable, testable

| and deployable individually

User N ulfilmen
Capability Capability

External
Suppliers

Tip 7

Use hypermedia controls to decouple services

atom+json / HTTP (AJOH)
Monitoring Reporting ﬂ
Capability Capability

Each developed by a separate team,
 using whatever tech they choose

(AJOH)

External
Suppliers

Our stack

Embedded Jetty (current project uses SimpleWeb)
PicoContainer for DI

Hibernate (but wrote our own SQL)

Abdera for Atom

Smoothie charts

Metrics @codehass

Graphite

Infrastructure automation stack

Fabric with boto

AWS, but deployable to anything with SSH
Maven (boo)

Git

Puppet for provisioning

NO SILVER BULLETS

This stuff is hard

 We haven't even talked about
— Versioning
— Integration
— Testing
— Deployment

« Eventual Consistency can be tricky for people to get
there head around

« Developers like using enterprisy software
— No one got fired for choosing an ESB
— Convincing people to use the web is hard

SUMMARY

but "invented a slightly better one. That finally got changed once more to what we have
today. He put pipes into Unix." Thompson also had to change most of the programs,
because up until that time, they couldn't take standard input. There wasn't really a need;
they all had file arguments. "GREP had a file argument, CAT had a file argument."

The next morning, "we had this orgy of ‘one liners." Everybody had a one liner.
Look at this, look at that. ...Everybody started putting forth the UNIX philosophy. Write

programs that do one thing and do it well. Write programs to work together. Write

“programs that handle text streams, because that is a universal interface.” Those ideas
which add up to the tool approach, were there in some unformed way before pipes, but
they really came together afterwards. Pipes became the catalyst for this UNIX
philosophy. "The tool thing has turned out to be actually successful. With pipes, many
programs could work together, and they could work together at a distance."

The Unix Philosophy :s/pipes/http/

Lions commentary on Unix 2nd edition

Consistent and reinforcing practices

Hexagonal Business capabilities composed of:

Micro Services that you can

Rewrite rather than maintain and which form

A Distributed Bounded Context.

Deployed as containerless OS services

With standardised application protocols and message semantics

Which are auto-scaling and designed for failure

Thought\Works:

Is hiring!

Thanks!

jalewis@thoughtworks.com

@boicy
http://bovon.org

