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Micro-services

Embedded Servlet Containers



Or how we designed and nearly built a Resource Oriented, Event
Driven System out of applications about 1000 lines long...

WHAT | DID LAST SUMMER



In the beginning...

* There was a new product being developed
by an organisation in London

* The organisation had gathered their list of
high level requirements

* And they asked ThoughtWorks if we could
help them design and build it...



So we took a look at their
requirements

 Me and my mates at ThoughtWorks

* Worked out to be about 5000 points worth
of User Stories

— At 7 points per pair of developers per week
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Tip 1
Divide and conquer

Start on the outside and model
business capabilities



{

D D) | Product Product | Product | | Product D
Real Time and Mobile CMS Ecommerce Demo External
Analytics Batch Interfaces Site Reporting
Product
2 1] 2 ]
3rd party Gateway SMS Gateway
Product Product | Product Product
Config Call Centre Marketing Reporting
Application Application Application Application |
| 2]
2 ] 2 I 2 ] Il
A/ E Services Config Services Services User Services Product Data
User / Ro%etl E $:| $:| ProductE|
Repository Raw Txn Store Account Store Member Store Repository —
Access and Entitlement Product / static Catalog |
]
@ Config al g] =@ g ] ?
Batch Lifec Metadat: Product Reportin
services servces Rules Engine Services
Rules Config
Batch Interface $:| $ -
Config / Application Reponin?
metadata store Rules store datastore
Metadata Rules Engine Reporting Services

Each small box represents a capability,

composed of one or more services



* The only way we could hit anything like the
timescales required was to scale the
programme quickly

* And that meant multiple teams in multiple
workstreams



And there were some, umm,
interesting non-functional
requirements too



aD D) | Product Product | Product | | Product D
Real Time and Mobile CMS Ecommerce Demo External
Analytics Batch Interfaces Site Reporting
Product
2 1] 2 ]
3rd party Gateway SMS Gateway
Product Product | Product Product
Config Call Centre Marketing Reporting
Application Application Application Application |
| 2]
|8 Z i, =1 - g |4
A/ E Services Config Ser\Ms Services User Services Product Data
User / Ro%etl E $:| $:| Product$:|
Repository Txn Store Account Store Member Store Repository —
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Config a gl z ] g ] ? g]
Batch LifeG Metadat Product Reportin
services servces Rules Engine : Services
Batch Ipfface 2] g | Rules Config
Config / Application Reportin
metadata store Rules store datastore
Metadata Rules Engine Reporting Services

Had to handle 1000TPS with a 99t percentile latency of < 2 seconds



{

Access and Entitlement

£]

Batch Life(%|

services

Batch Interface

Product / static Catalog

Config a
Metadat:
servces

2

Config /
metadata store

Metadata

Al

Rules Engine

2

Rules store

2

RulesConfig
ApplicXi

Rules Engine

erportin?|

Services

Reportin?|

datastore

Reporting Services

aD D) | Product Product | Product | | Product D
Real Time and Mobile CMS Ecommerce Demo External
Analytics Batch Interfaces Site Reporting
Product
2 1] 2 ]
3rd party Gateway SMS Gateway
Product Product | Product Product
Config Call Centre Marketing Reporting
Application Application Application Application |
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Support a user base of 100 million active customers




Real Time and Mobile CMS Ecommerce Demo External
Batch Interfaces Site Reporting

aD D) | Product Product | Product | | Product D
Analytics

Product
2 1] 2 ]
3rd party Gateway SMS Gateway
Product Product | Product Product
Config Call Centre Marketing Reporting
Application Application Application Application |
| 2]
2 ] 2 I 2 ] Il
A/ E Services Config Services Services User Services Product Data
User / Ro%etl E $:| $:| ProductE|
Repository Txn Store Account Store Member Store Repository —
Access and Entitlement Product / static Catalog |
@ ; Config al g] =@ g ] ? 2]
Batch Lifec Metadat: Product Reportin
services / servces Rules Engine i Services
Batch Inyefface =] Z ] jitlics Coniid
Config | Application Reportin
metadata store Rules store datastore
Metadata Rules Engine Reporting Services

Needed to support bulk loads of 30 — 90 million records nightly
(and keep them for six months)




Did | mention PCI Level 1?



Finally, this is a product build.

So it needed to be modular /
<cough> “infinitely configurable”

And deployable on Cloud and Tin



The product need to to be...

« Performance

— fairly high throughput both transactional and batch
« Fault tolerant

— One thing about the cloud, you are designing for failure right?
« Configurable

— On a per install or PaaS basis
« Portable

— Fortunately not to Windows...
« Maintainable

— over multiple versions and years
« Supporting big data sets

— Billions of transactions available
— Millions of customers available

and capable of being built quickly without sacrificing the other principles



Plus ¢a change, plus c'est la méme chose.

(The more things change the more they stay the same)



So, after five weeks we had broken the problem down into capabilties

Now we had to start scaling the teams to deliver these capabilities




Tip 2

Use Conway’s Law to structure teams

“...organizations which design systems ... are constrained to produce designs
which are copies of the communication structure of those organizations”

Melvin Conway, 1968



The first business capability - Users

* Responsible for creation and maintenance of
users in the system

— Up to 100 million of them per instance of the product

* Used by many clients with many usage patterns
— Call centre and website — CRUD

— Inbound batch files — CRUD x hundreds of thousands
per night

« Many downstream consumers of the data
— Fulfilment systems for example



Tip 3

The Last Responsible Moment

Don’t decide everything at the point you know least



We started with a business process...

EN?t | : Baich
Sx etrna Enrolment
ek Results File
Invalid
File .
4 Notify Sys
Admin Batch Failed
Apply rules
Batch File
/ﬁ: Send Letter
) Use
Link Account
\/
Invalid _ |:>
U Notify Sys
Admin

and noticed something funny...
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Email




| know what you are thinking...

x

* Dan North coined the term Enterprise Night Bus...



Or yéu could use the web

F

REST In Practice




Tip 4

Be of the web, not behind the web



B -

~ RFC 5023 to be precise



/user-request

application/atom+json

/user-request/1223

1 Event

queue
—— Queue
processing
- engine

[ User

1 Service

lusers/142 application/vnd.user+JSON

’

/users

/

and this is what we built




‘ /user-request
application/atom+json

/user-request/1223

Standard resource representations using well known web
standards — atom+json

lusers/142 application/vnd.user+JSON

—

/users

—




/user-request

L/ ‘ application/atom+json |
‘ /user-request/1223

Reified the request to create a user. Clients POST a request
to create a user as an entry to an atom collection.

lusers/142 ‘ application/vnd.user+JSON |
/users

/



Tip 5

If something is important, make it an
explicit part of your design

Reify
to convert into or regard as a concrete thing: to reify a
concept.



application/atom+json

‘ /user-request
‘ /user-request/1223

———
Event | Event

||
‘ queue - store

Event queue has the single responsibility of managing state
transitions for the request to create a user

— \ —
' Qd”%'- User | | User
1 Service P store

lusers/142 application/vnd.user+JSON

e —

/users

.




/user-request

b ‘ application/atom+json |
‘ /user-request/1223

Queue Processing Engine implemented the Competing
Consumer pattern using Conditional GET, PUT and Etags
against the atom collection exposed by the event queue

/users :



/user-request

‘ /user-request/1223

application/atom+json

‘ /users '



/user-request

L/ ‘ application/atom+json \
‘ /user-request/1223

After creation, representations of Users are available at
canonical locations in well defined formats and creation
events added to another atom collection

IAN/MNN A MNLIALIMA ENCEFANL L L LI/ AACI/MD

lusers/142 application/vnd.user+JSON
/

/users

e ———




Where they are available for consumption

by other downstream systems
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Our micro-services

» User Request Queue
— Forms the transactional boundary of the system

* Request Queue Processor

— Competing Consumer processes events on the
gqueue and POSTs them to

« User Service
— System of record for Users in the system
— Responsible for all state changes of those users
— Exposes events on those users to other systems



CHARACTERISTICS OF
MICRO-SERVICES



Small with a single responsibility

» Each application only does one thing

« Small enough to fit in your head

— James’ heuristic
— “If a class is bigger than my head then it is too
big”

« Small enough that you can throw them away
— Rewrite over Maintain



Containerless and installed as well
behaved Unix services

« Embedded web container
— Jetty / SimpleMind

— This has a lot of benefits for testing (inproctester for
example) and eases deployment

 Packaged as a single executable jar
— Along with their configuration
— And unix standard rc.d scripts

 |nstalled in the same way you would install httpd or
any other application

— Why recreate the wheel? Daemons seem to work ok for
everything else. Unless you are *special*?



Located in different VCS roots

Each application is completely separate

Software developers see similarities and abstractions
— And before you know it you have One Domain To Rule Them All

Domain Driven Design / Conways Law

— Domains in different bounded contexts should be distinct — and its ok to
have duplication

— Use physical separation to enforce this

There will be common code, but it should be library and
infrastructure code

— Treat it as you would any other open source library
— Stick it in a nexus repo somewhere and treat it as a binary dependency



Provisioned automatically

* The way to manage the complexity of
many small applications is declarative
provisioning
— UAT:

e 2 *service A, Load Balanced, Auto-Scaled
e 2 * service B, Load Balanced, Auto-Scaled
« 1 * database cluster



Status aware and auto-scaling

* What good is competing consumer if you only
have one consumer?

— We don’t want to wake Peter up at three in the
morning any more to start a new process

» Use watchdog processes to monitor in-app
status pages

— Each app exposes metrics about itself
— In our case, queue-depth for example

— This allows others services to auto-scale to meet
throughput requirements



A single capability composed of
many small applications and
exposing a uniform interface of Atom
Collections



How the capabilities form a product



They interact via the uniform

interface

e« HTTP
— Don't fight the battles already won
— Use no-brainer force multipliers like reverse proxies

« HATEOS
— Link relations drive state changes

— Its an anti-corruption layer that allows the capability to
evolve independently of its clients

« Standard media types
— Can be used by many different clients
— You can monitor it using a feed reader if you want...



atom+json / HTTP (AJOH)
Monitoring Reporting ﬂ
Capability Capability

(AJOH) (AJOH)

atom+XML// HTTP
User Fulfilment
Capability Capability
AJOH)

Capabilities poll waiting for events that they know how to deal
with. Forming an eventually consistent system

External
Suppliers



Tip 6

Favour service choreography over orchestration



atom+json / HTTP (AJOH)
Monitoring Reporting ﬂ
Capability Capability

| Each is entirely decoupled from it’s clients, scalable, testable

| and deployable individually

User N ulfilmen
Capability Capability

External
Suppliers



Tip 7

Use hypermedia controls to decouple services



atom+json / HTTP (AJOH)
Monitoring Reporting ﬂ
Capability Capability

Each developed by a separate team,
 using whatever tech they choose

(AJOH)

External
Suppliers



Our stack

Embedded Jetty (current project uses SimpleWeb)
PicoContainer for DI

Hibernate (but wrote our own SQL)

Abdera for Atom

Smoothie charts

Metrics @codehass

Graphite



Infrastructure automation stack

Fabric with boto

AWS, but deployable to anything with SSH
Maven (boo)

Git

Puppet for provisioning



NO SILVER BULLETS



This stuff is hard

 We haven't even talked about
— Versioning
— Integration
— Testing
— Deployment

« Eventual Consistency can be tricky for people to get
there head around

« Developers like using enterprisy software
— No one got fired for choosing an ESB
— Convincing people to use the web is hard



SUMMARY



but "invented a slightly better one. That finally got changed once more to what we have
today. He put pipes into Unix." Thompson also had to change most of the programs,
because up until that time, they couldn't take standard input. There wasn't really a need;
they all had file arguments. "GREP had a file argument, CAT had a file argument."

The next morning, "we had this orgy of ‘one liners." Everybody had a one liner.
Look at this, look at that. ...Everybody started putting forth the UNIX philosophy. Write

programs that do one thing and do it well. Write programs to work together. Write

“programs that handle text streams, because that is a universal interface.” Those ideas
which add up to the tool approach, were there in some unformed way before pipes, but
they really came together afterwards. Pipes became the catalyst for this UNIX
philosophy. "The tool thing has turned out to be actually successful. With pipes, many
programs could work together, and they could work together at a distance."

The Unix Philosophy :s/pipes/http/

Lions commentary on Unix 2nd edition



Consistent and reinforcing practices

Hexagonal Business capabilities composed of:

Micro Services that you can

Rewrite rather than maintain and which form

A Distributed Bounded Context.

Deployed as containerless OS services

With standardised application protocols and message semantics

Which are auto-scaling and designed for failure
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