
Main sponsor

Micro Services – Java the Unix way

James Lewis

James Lewis

Senior Engineer / Principal Consultant / TAB member

Your Storyteller today

radar

latest Edition released last week

Micro-services

Embedded Servlet Containers

WHAT I DID LAST SUMMER

Or how we designed and nearly built a Resource Oriented, Event
Driven System out of applications about 1000 lines long…

In the beginning…

•  There was a new product being developed
by an organisation in London

•  The organisation had gathered their list of
high level requirements

•  And they asked ThoughtWorks if we could
help them design and build it…

So we took a look at their
requirements

•  Me and my mates at ThoughtWorks

•  Worked out to be about 5000 points worth
of User Stories
– At 7 points per pair of developers per week

0

Half way
through

Complete

opened
the box

Cows
come
home

hell
freezes pigs fly

Heat
death of

the
Universe

End day
1

Tip 1

Divide and conquer

Start	
 on	
 the	
 outside	
 and	
 model	

business	
 capabili3es

Product

Access and Entitlement

A / E Services

User / Role
Repository

Metadata

Config and
Metadata
servces

Config /
metadata store

Reporting Services

Reporting
Services

Reporting
datastore

Product / static Catalog
Product / static Catalog

Product / static Catalog

Product Data

Product
Repository

Product
Config

 Application

Product
Call Centre
Application

Product
Marketing
Application

Product
Reporting

Application

Rules Engine

Rules Engine

Rules store

Product
Rules Config
ApplicationBatch Interface

Batch Lifecyle
services

Account
Services

Raw Txn Store

User Services

Account Store Member Store

Config Services

3rd party Gateway SMS Gateway

Product
Demo
SiteAnalytics

Real Time and
Batch Interfaces

External
Reporting

Product
CMS

Product
Ecommerce

Product
Mobile

Each small box represents a capability,

composed of one or more services

•  The only way we could hit anything like the
timescales required was to scale the
programme quickly

•  And that meant multiple teams in multiple
workstreams

And there were some, umm,
interesting non-functional

requirements too

This
bit

Product

Access and Entitlement

A / E Services

User / Role
Repository

Metadata

Config and
Metadata
servces

Config /
metadata store

Reporting Services

Reporting
Services

Reporting
datastore

Product / static Catalog
Product / static Catalog

Product / static Catalog

Product Data

Product
Repository

Product
Config

 Application

Product
Call Centre
Application

Product
Marketing
Application

Product
Reporting

Application

Rules Engine

Rules Engine

Rules store

Product
Rules Config
ApplicationBatch Interface

Batch Lifecyle
services

Account
Services

Raw Txn Store

User Services

Account Store Member Store

Config Services

3rd party Gateway SMS Gateway

Product
Demo
SiteAnalytics

Real Time and
Batch Interfaces

External
Reporting

Product
CMS

Product
Ecommerce

Product
Mobile

Had to handle 1000TPS with a 99th percentile latency of < 2 seconds

Product

Access and Entitlement

A / E Services

User / Role
Repository

Metadata

Config and
Metadata
servces

Config /
metadata store

Reporting Services

Reporting
Services

Reporting
datastore

Product / static Catalog
Product / static Catalog

Product / static Catalog

Product Data

Product
Repository

Product
Config

 Application

Product
Call Centre
Application

Product
Marketing
Application

Product
Reporting

Application

Rules Engine

Rules Engine

Rules store

Product
Rules Config
ApplicationBatch Interface

Batch Lifecyle
services

Account
Services

Raw Txn Store

User Services

Account Store Member Store

Config Services

3rd party Gateway SMS Gateway

Product
Demo
SiteAnalytics

Real Time and
Batch Interfaces

External
Reporting

Product
CMS

Product
Ecommerce

Product
Mobile

This
bit

Support a user base of 100 million active customers

Product

Access and Entitlement

A / E Services

User / Role
Repository

Metadata

Config and
Metadata
servces

Config /
metadata store

Reporting Services

Reporting
Services

Reporting
datastore

Product / static Catalog
Product / static Catalog

Product / static Catalog

Product Data

Product
Repository

Product
Config

 Application

Product
Call Centre
Application

Product
Marketing
Application

Product
Reporting

Application

Rules Engine

Rules Engine

Rules store

Product
Rules Config
ApplicationBatch Interface

Batch Lifecyle
services

Account
Services

Raw Txn Store

User Services

Account Store Member Store

Config Services

3rd party Gateway SMS Gateway

Product
Demo
SiteAnalytics

Real Time and
Batch Interfaces

External
Reporting

Product
CMS

Product
Ecommerce

Product
Mobile

This
bit

Needed to support bulk loads of 30 – 90 million records nightly
(and keep them for six months)

Did I mention PCI Level 1?

Finally, this is a product build.

So it needed to be modular /
<cough> “infinitely configurable”

And deployable on Cloud and Tin

The product need to to be…
•  Performance

–  fairly high throughput both transactional and batch
•  Fault tolerant

–  One thing about the cloud, you are designing for failure right?
•  Configurable

–  On a per install or PaaS basis
•  Portable

–  Fortunately not to Windows…
•  Maintainable

–  over multiple versions and years
•  Supporting big data sets

–  Billions of transactions available
–  Millions of customers available

and capable of being built quickly without sacrificing the other principles

Plus ça change, plus c'est la même chose.

(The	
 more	
 things	
 change	
 the	
 more	
 they	
 stay	
 the	
 same)	

So, after five weeks we had broken the problem down into capabilties

Now we had to start scaling the teams to deliver these capabilities

Tip 2

Use Conway’s Law to structure teams

“…organiza3ons	
 which	
 design	
 systems	
 …	
 are	
 constrained	
 to	
 produce	
 designs	

which	
 are	
 copies	
 of	
 the	
 communica3on	
 structure	
 of	
 those	
 organiza3ons”	

Melvin	
 Conway,	
 1968	

The first business capability - Users

•  Responsible for creation and maintenance of
users in the system
–  Up to 100 million of them per instance of the product

•  Used by many clients with many usage patterns
–  Call centre and website – CRUD
–  Inbound batch files – CRUD x hundreds of thousands

per night

•  Many downstream consumers of the data
–  Fulfilment systems for example

Tip 3

Don’t decide everything at the point you know least

The Last Responsible Moment

We started with a business process…

and noticed something funny…

file
received Validate file

structure
Validate Line

Item Create User

Send results
file

Send Letter

Apply rules

Letter
Fulfilment File

Batch Results
File

Batch File

Invalid
File

Notify
 External
System

Notify Sys
Admin

Invalid
User Notify Sys

Admin

Batch
Enrolment

Results File

Batch Failed

Link Account

User
Created

3rd Party data
capture

3rd party call
centre

Events

User
Collection

File Structure
Validation

Results File
Creation

Batch Store

Batch
Processing

Service

Address
Validation

User
Validation

User
 Creation

User Store

Member
Service

Rules Engine

Rules store

Rules Engine

Outgoing

Results File

Incoming

Batch File

Monitoring
Services

Batch
monitoring

User
 Monitoring

Fulfilment
Monitoring

Account
Monitoring

Batch
Event

Fulfilment

Fulfilment
File

Fulfilment
File

Fulfilment
File

fulfilment

fulfilment

Email

Fulfilment
Service

Fulfilment
Event

Triggering TriggeringTriggering Triggering Triggering

Bank
Account
Creation

Bank
Account Store

Bank
Account
Service

TriggeringTriggering

Ad-hoc
Users

Triggering

I know what you are thinking…

ESB*
* Dan North coined the term Enterprise Night Bus…

Or you could use the web

Tip 4

Be of the web, not behind the web

RFC 5023 to be precise

Users Capability

Event
store

Event
queue

User
store

User
Service

Queue
processing

engine

application/atom+json

application/vnd.user+JSON

/user-request

/users/142

/users

/user-request/1223

and this is what we built

Users Capability

Event
store

Event
queue

User
store

User
Service

Queue
processing

engine

application/atom+json

application/vnd.user+JSON

/user-request

/users/142

/users

/user-request/1223

Standard resource representations using well known web
standards – atom+json

Users Capability

Event
store

Event
queue

User
store

User
Service

Queue
processing

engine

application/atom+json

application/vnd.user+JSON

/user-request

/users/142

/users

/user-request/1223

Reified the request to create a user. Clients POST a request
to create a user as an entry to an atom collection.

Tip 5

Reify
to convert into or regard as a concrete thing: to reify a
concept.

If something is important, make it an
explicit part of your design

Users Capability

Event
store

Event
queue

User
store

User
Service

Queue
processing

engine

application/atom+json

application/vnd.user+JSON

/user-request

/users/142

/users

/user-request/1223

Event queue has the single responsibility of managing state
transitions for the request to create a user

Users Capability

Event
store

Event
queue

User
store

User
Service

Queue
processing

engine

application/atom+json

application/vnd.user+JSON

/user-request

/users/142

/users

/user-request/1223

Queue Processing Engine implemented the Competing
Consumer pattern using Conditional GET, PUT and Etags
against the atom collection exposed by the event queue

Users Capability

Event
store

Event
queue

User
store

User
Service

Queue
processing

engine

application/atom+json

application/vnd.user+JSON

/user-request

/users/142

/users

/user-request/1223

User Service and store is the system of record for users

Users Capability

Event
store

Event
queue

User
store

User
Service

Queue
processing

engine

application/atom+json

application/vnd.user+JSON

/user-request

/users/142

/users

/user-request/1223

After creation, representations of Users are available at
canonical locations in well defined formats and creation
events added to another atom collection

Where they are available for consumption
by other downstream systems

User
Collection

File Structure
Validation

Results File
Creation

Batch Store

Batch
Processing

Service

Address
Validation

User
Validation

User
 Creation

User Store

Member
Service

Rules Engine

Rules store

Rules Engine

Outgoing

Results File

Incoming

Batch File

Monitoring
Services

Batch
monitoring

User
 Monitoring

Fulfilment
Monitoring

Account
Monitoring

Batch
Event

Fulfilment

Fulfilment
File

Fulfilment
File

Fulfilment
File

fulfilment

fulfilment

Email

Fulfilment
Service

Fulfilment
Event

Triggering TriggeringTriggering Triggering Triggering

Bank
Account
Creation

Bank
Account Store

Bank
Account
Service

TriggeringTriggering

Ad-hoc
Users

Triggering

Fulfilment

Monitoring

Our micro-services
•  User Request Queue

– Forms the transactional boundary of the system

•  Request Queue Processor
– Competing Consumer processes events on the

queue and POSTs them to

•  User Service
– System of record for Users in the system
– Responsible for all state changes of those users
– Exposes events on those users to other systems

CHARACTERISTICS OF
MICRO-SERVICES

Small with a single responsibility
•  Each application only does one thing

•  Small enough to fit in your head
–  James’ heuristic
–  “If a class is bigger than my head then it is too

big”

•  Small enough that you can throw them away
– Rewrite over Maintain

Containerless and installed as well
behaved Unix services

•  Embedded web container
–  Jetty / SimpleMind
–  This has a lot of benefits for testing (inproctester for

example) and eases deployment

•  Packaged as a single executable jar

–  Along with their configuration
–  And unix standard rc.d scripts

•  Installed in the same way you would install httpd or
any other application
–  Why recreate the wheel? Daemons seem to work ok for

everything else. Unless you are *special*?

Located in different VCS roots
•  Each application is completely separate

•  Software developers see similarities and abstractions
–  And before you know it you have One Domain To Rule Them All

•  Domain Driven Design / Conways Law
–  Domains in different bounded contexts should be distinct – and its ok to

have duplication
–  Use physical separation to enforce this

•  There will be common code, but it should be library and
infrastructure code
–  Treat it as you would any other open source library
–  Stick it in a nexus repo somewhere and treat it as a binary dependency

Provisioned automatically

•  The way to manage the complexity of
many small applications is declarative
provisioning
– UAT:

•  2 * service A, Load Balanced, Auto-Scaled
•  2 * service B, Load Balanced, Auto-Scaled
•  1 * database cluster

Status aware and auto-scaling
•  What good is competing consumer if you only

have one consumer?
– We don’t want to wake Peter up at three in the

morning any more to start a new process

•  Use watchdog processes to monitor in-app
status pages
– Each app exposes metrics about itself
–  In our case, queue-depth for example
– This allows others services to auto-scale to meet

throughput requirements

Users Capability

Event
store

Event
queue

User
store

User
Service

Queue
processing

engine

application/atom+json

application/vnd.user+JSON

/user-request

/users/142

/users

/user-request/1223

A single capability composed of
many small applications and
exposing a uniform interface of Atom
Collections

How the capabilities form a product

They interact via the uniform
interface

•  HTTP
–  Don’t fight the battles already won
–  Use no-brainer force multipliers like reverse proxies

•  HATEOS
–  Link relations drive state changes
–  Its an anti-corruption layer that allows the capability to

evolve independently of its clients

•  Standard media types
–  Can be used by many different clients
–  You can monitor it using a feed reader if you want…

User
Capability

Fulfilment
Capability

Reporting
Capability

External
Suppliers

Call Centre

atom+json / HTTP (AJOH)

(AJOH) (AJOH)

(AJOH)

(AJOH)(AJOH)

Inbound Batch

Monitoring
Capability

atom+XML / HTTP

Capabilities poll waiting for events that they know how to deal
with. Forming an eventually consistent system

Tip 6

Favour	
 service	
 choreography	
 over	
 orchestra3on

User
Capability

Fulfilment
Capability

Reporting
Capability

External
Suppliers

Call Centre

atom+json / HTTP (AJOH)

(AJOH) (AJOH)

(AJOH)

(AJOH)(AJOH)

Inbound Batch

Monitoring
Capability

atom+XML / HTTP
Each is entirely decoupled from it’s clients, scalable, testable
and deployable individually

Tip 7

Use hypermedia controls to decouple services

User
Capability

Fulfilment
Capability

Reporting
Capability

External
Suppliers

Call Centre

atom+json / HTTP (AJOH)

(AJOH) (AJOH)

(AJOH)

(AJOH)(AJOH)

Inbound Batch

Monitoring
Capability

atom+XML / HTTP

Each developed by a separate team,
using whatever tech they choose

Our stack
•  Embedded Jetty (current project uses SimpleWeb)

•  PicoContainer for DI

•  Hibernate (but wrote our own SQL)

•  Abdera for Atom

•  Smoothie charts

•  Metrics @codehass

•  Graphite

Infrastructure automation stack
•  Fabric with boto

•  AWS, but deployable to anything with SSH

•  Maven (boo)

•  Git

•  Puppet for provisioning

NO SILVER BULLETS

This stuff is hard
•  We haven’t even talked about

–  Versioning
–  Integration
–  Testing
–  Deployment

•  Eventual Consistency can be tricky for people to get
there head around

•  Developers like using enterprisy software
–  No one got fired for choosing an ESB
–  Convincing people to use the web is hard

SUMMARY

Lions commentary on Unix 2nd edition

The Unix Philosophy :s/pipes/hJp/	
 	

Consistent and reinforcing practices
Hexagonal Business capabilities composed of:

Micro Services that you can

Rewrite rather than maintain and which form

A Distributed Bounded Context.

Deployed as containerless OS services

With standardised application protocols and message semantics

Which are auto-scaling and designed for failure

Is hiring!

Thanks!

jalewis@thoughtworks.com
@boicy
http://bovon.org

