
Challenges in maintaing a high-performance
Search-Engine written in Java

Simon Willnauer
Apache Lucene Core Committer & PMC Chair
simonw@apache.org / simon.willnauer@searchworkings.com

1Wednesday, March 21, 2012

mailto:simonw@apache.org
mailto:simonw@apache.org
mailto:simon.willnauer@searchworkings.com
mailto:simon.willnauer@searchworkings.com

Who am I?

• Lucene Core Committer

• Project Management Committee Chair (PMC)

• Apache Member

• Co-Founder BerlinBuzzwords

• Working on Searchworkings.org / Searchworkings.com

2

2Wednesday, March 21, 2012

http://www.searchworkings.org

• Community Portal targeting OpenSource Search

3

3Wednesday, March 21, 2012

http://www.searchworkings.org
http://www.searchworkings.org

Agenda

• What search engine are you talking about?

• Its all about performance ...eerrr community

• It’s Java so its fast?

• Challenges we faced and solved in the last years

• Testing, Performance, Concurrency and Resource Utilization

• Questions

4

4Wednesday, March 21, 2012

Lets talk about Lucene

• Apache TLP since 2001

• Grandfather of projects like Mahout, Hadoop, Nutch, Tika

• Used by thousands of applications world wide

• Apache 2.0 licensed

• Core has Zero-Dependency

• Developed and Maintained by Volunteers

5

5Wednesday, March 21, 2012

Who uses it?

6Notice: All information above are taken from publicly available resources mentioning the use of Apache Lucene, ElasticSearch or Apache Solr, The mentioned companies or products are
randomly selected without any particular importance. All marks mentioned may be trademarks or registered trademarks of their respective owners.

6Wednesday, March 21, 2012

Just a search engine - so what’s the big deal?

• True - Just software!

• Massive community - with big expectations

• Mission critical for lots of companies

• End-user expects instant results independent of the request complexity

• New features often require major changes

• Our contract is trust - we need to maintain trust!

7

7Wednesday, March 21, 2012

Trust & Passion

• ~ 30 committers (~ 10 active, some are payed to work on Lucene)

• All technical communication are public (JIRA, Mailinglist, IRC)

• Consensus is king!

• No lead developer or architect

• No stand-ups, meetings or roadmap

• Up to 10k mails per month

• No passion, no progress!

• The Apache way: Community over Code

8

8Wednesday, March 21, 2012

Enough about Community - lets talk about code!

9

yesterday today tomorrow

9Wednesday, March 21, 2012

We are working in Java so....

• No need to know the machine & your environment

• Use JDK Collections, they are fast

• Short Lived Objects are Free

• Great Data-Structures are Mutable

• Concurrency means Speed

• IO is trivial

• Method Calls are fast - there is a JIT, no?

• Unicode is there and it works

10

10Wednesday, March 21, 2012

Mechanical Sympathy (Jackie Steward / Martin Thompson)

11

“The most amazing achievement of the
computer software industry is its continuing
cancellation of the steady and staggering
gains made by the computer hardware
industry.” Henry Peteroski

11Wednesday, March 21, 2012

Know your environment at scale - an example

• For Lucene Term Posting-List lookups are crucial

• Speed is everything, we can do up to 600k key/value lookups per
second (single box)

• We deal with Strings mainly (full Unicode Support)

• The main data-structure is a Sorted-Dictionary

• No internal caches anymore

• Large amount of concurrent reads

12

12Wednesday, March 21, 2012

The upper bound - not uncommon to reach!

• 274 Billion Unique Terms (Java Strings - 2 byte per Char)

• One entry (term, postingpointer, docFreq)

• At least one additional object per entry

• (numTerms * (objectHeader + postingspointer + docFreq + objectHeader
+ reference + average num Chars per String))

• (109 * (8byte + 8byte + 4byte + 8byte + 8byte + 10 bytes)) = 109 *
46byte ~ 44GB

• You might have enough Heap Space, but how is your GC gonna like
that? -> Remember 2 *109 Objects

13

13Wednesday, March 21, 2012

Where to focus on?

14

Impact on GC

Space/CPU Utilization
Concurrency

Compression
Do we need 2 bytes per Character?

Any exploitable data properties

Amount of Objects (Long & Short Living)

JVM memory allocation

Cost & Need of a Multiple Writers Model

CPU Cache UtilizationCost of a Monitor / CAS

Need of mutability

Can we specialized a data-strucutres

Can we allow stack allocation?

14Wednesday, March 21, 2012

What we focus on...

15

Impact on GC

Space/CPU Utilization
Concurrency

Compression
Materialize strings to bytes

Strings can share prefix & suffix

Data Structures with Constant number of objects

Guarantee continuous memory allocation

Single Writer - Multiple Readers

Materialized Data structures for Java HEAP
Write, Commit, Merge

Write Once & Read - Only

Finite State Transducers / Machines

No Java Collections where scale is an issue

UTF-8 by default or custom encoding

MemoryMap | NIO

Exploit FS / OS Caches

Prevent False Sharing

15Wednesday, March 21, 2012

Is all this necessary?

• Yes & No - it all depends on finding the hotspots

• Measure & Optimize for you use-case.

• Data-structures are not general purpose (like the don’t support
deletes)

• Follow the 80 / 20 rule

• Enforce Efficiency by design

• Java Iterators are a good example of how not to do it!

• Remember you OS is highly optimized, make use of it!

16

16Wednesday, March 21, 2012

Enough high level - concrete problems please!

• Challenge: Idle is no-good!

• Challenge: One Data-Structure to rule them all?

• Challenge: How how to test a library

• Challenge: What’s needed for a 20000% performance improvement

17

17Wednesday, March 21, 2012

Challenge: Idle is no-good

• Building an index is a CPU & IO intensive task

• Lucene is full of indexes (thats basically all it does)

• Ultimate Goal is to scale up with CPUs and saturate IO at the same time

• Keep your code complexity in mind

• Other people might need to maintain / extend this

18

Don’t go crazy!

18Wednesday, March 21, 2012

Here is the problem

19

WTF?

19Wednesday, March 21, 2012

A closer look...

20

ddddddo ddddddo ddddddo ddddddo ddddddo

Thread
State

DocumentsWriter

IndexWriter

Thread
State

Thread
State

Thread
State

Thread
State

dodododododoc

merge segments in memory

Flush to Disk

Merge on flush

M
ul

ti
-T

hr
ea

d
ed

S
in

g
le

-T
hr

ea
d

ed
Directory

Answer: it gives
you threads a
break and it’s

having a drink with
your slow-as-s**t

IO System

20Wednesday, March 21, 2012

Our Solution

21

ddddddo ddddddo ddddddo ddddddo ddddddo

DWPT

DocumentsWriter

IndexWriter

DWPT DWPT DWPT DWPT

Flush to Disk

M
ul

ti
-T

hr
ea

d
ed

Directory

21Wednesday, March 21, 2012

The Result

22

Indexing Ingest Rate over time with Lucene 4.0 & DWPT Indexing 7 Million
4kb wikipedia documents

vs. 620 sec on 3.x

22Wednesday, March 21, 2012

Challenge: One Data-Structure to Rule them all?

• Like most other systems writing datastructures to disk Lucene didn’t
expose it for extension

• Major problem for researchers, engineers who know what they are doing

• Special use-cases need special solutions

• Unique ID Field usually is a 1 to 1 key to document mapping

• Holding a posting list pointer is a wasteful

• Term lookup + disk seek vs. Term lookup + read

• Research is active in this area (integer encoding for instance)

23

23Wednesday, March 21, 2012

10000 ft view

24

IndexWriter IndexReader

Directory

FileSystem

24Wednesday, March 21, 2012

Introducing an extra layer

25

IndexWriter IndexReader

Flex API

Directory

FileSystem

Codec

25Wednesday, March 21, 2012

For Backwards Compatibility you know?

26

Available Codecs

segment

title

Lucene 4 Lucene 4

id

segment

title

Lucene 3 Lucene 3

id

Index
Writer

?

Lucene 5 Lucene 4

?

segment

title

Lucene 5 Lucene 5

id

<< merge >>

Index

Lucene 3

?

Index
Reader Index

<<
 re

ad
 >

>

26Wednesday, March 21, 2012

Using the right tool for the job..

27

Switching to Memory PostingsFormat

27Wednesday, March 21, 2012

Using the right tool for the job..

28

Switching to BlockTreeTermIndex

28Wednesday, March 21, 2012

Challenge: How to test a library

29

• A library typically has:

• lots of interfaces & abstract classes

• tons of parameters

• needs to handle user input gracefully

• Ideally we test all combinations of Interfaces, parameters and user
inputs?

• Yeah - right!

29Wednesday, March 21, 2012

What’s wrong with Unit-Test

• Short answer: Nothing!

• But...

• 1 Run == 1000 Runs? (only cover regression?)

• Boundaries are rarely reached

• Waste of CPU cycles

• Test usually run against a single implementation

• How to test against the full Unicode-Range?

30

30Wednesday, March 21, 2012

An Example

31

The method to test:

The test:

The result:

31Wednesday, March 21, 2012

Can it fail?

32

It can! ...after 53139 Runs

• Boundaries are everywhere

• There is no positive value for Integer.MIN

• But how to repeat / debug?

32Wednesday, March 21, 2012

Solution: A Randomized UnitTest Framework

• Disclaimer: this stuff has been around for ages - not our invention!

• Random selection of:

• Interface Implementations

• Input Parameters like # iterations, # threads, # cache sizes,
intervals, ...

• Random Valid Unicode Strings (Breaking JVM for fun and profit)

• Throttling IO

• Random Low Level Data-Strucutures

• And many more...

33

33Wednesday, March 21, 2012

Make sure your unit tests fail - eventually!

• Framework is build for Lucene

• Currently factored out into a general purpose framework

• Check it out on: https://github.com/carrotsearch/randomizedtesting

• Wanna help the Lucene Project?

• Run our tests and report the failure!

34

34Wednesday, March 21, 2012

https://github.com/carrotsearch/randomizedtesting
https://github.com/carrotsearch/randomizedtesting

Challenge: What’s needed for a 20k%
Performance improvement.

35

BEER!

FUN!COFFEE!

35Wednesday, March 21, 2012

The Problem: Fuzzy Search

• Retrieve all documents containing a given term within a Levenshtein
Distance of <= 2

• Given: a sorted dictionary of terms

• Trivial Solution: Brute Force - filter(terms, LD(2, queryTerm))

• Problem: it’s damn slow!

• O(t) terms examined, t=number of terms in all docs for that field.
Exhaustively compares each term. We would prefer O(log2t) instead.

• O(n2) comparison function, n=length of term. Levenshtein dynamic
programming. We would prefer O(n) instead.

36

36Wednesday, March 21, 2012

Solution: Turn Queries into Automatons

• Read a crazy Paper about building Levenshtein Automaton and
implement it. (sounds easy - right?)

• Only explore subtrees that can lead to an accept state of some finite
state machine.

• AutomatonQuery traverses the term dictionary and the state machine in
parallel

• Imagine the index as a state machine that recognizes Terms and
transduces matching Documents.

• AutomatonQuery represents a user’s search needs as a FSM.

• The intersection of the two emits search results

37

37Wednesday, March 21, 2012

Solution: Turn Queries into Finite State Machines

38

Finite-State Queries in Lucene
Robert Muir

rmuir@apache.org

Example DFA for “dogs” Levenshtein Distance 1

\u0000-f, g ,h-n, o, p-\uffff

Accepts: “dugs”

d

o

g

38Wednesday, March 21, 2012

Turns out to be a massive improvement!

39

In Lucene 3 this is about 0.1 - 0.2 QPS

39Wednesday, March 21, 2012

Berlin Buzzwords 2012

40

• Conference on High-Scalability, NoSQL and Search

• 600+ Attendees, 50 Sessions, Trainings etc.

• Discount Code: 10% with “BB12-33DG” valid March 21st - March 25th

40Wednesday, March 21, 2012

Questions anybody?

41

?
41Wednesday, March 21, 2012

