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Who am I?

• Lucene Core Committer

• Project Management Committee Chair (PMC)

• Apache Member

• Co-Founder BerlinBuzzwords

• Working on Searchworkings.org / Searchworkings.com
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http://www.searchworkings.org

• Community Portal targeting OpenSource Search
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Agenda

• What search engine are you talking about?

• Its all about performance ...eerrr community

• It’s Java so its fast?

• Challenges we faced and solved in the last years

• Testing, Performance, Concurrency and Resource Utilization 

• Questions
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Lets talk about Lucene

• Apache TLP since 2001

• Grandfather of projects like Mahout, Hadoop, Nutch, Tika

• Used by thousands of applications world wide

• Apache 2.0 licensed

• Core has Zero-Dependency

• Developed and Maintained by Volunteers
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Who uses it?

6Notice: All information above are taken from publicly available resources mentioning the use of Apache Lucene, ElasticSearch or Apache Solr, The mentioned companies or products are 
randomly selected without any particular importance. All marks mentioned may be trademarks or registered trademarks of their respective owners.
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Just a search engine - so what’s the big deal?

• True - Just software!

• Massive community - with big expectations

• Mission critical for lots of companies

• End-user expects instant results independent of the request complexity

• New features often require major changes 

• Our contract is trust - we need to maintain trust!
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Trust & Passion

• ~ 30 committers (~ 10 active, some are payed to work on Lucene)

• All technical communication are public (JIRA, Mailinglist, IRC)

• Consensus is king! 

• No lead developer or architect

• No stand-ups, meetings or roadmap

• Up to 10k mails per month

• No passion, no progress!

• The Apache way: Community over Code
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Enough about Community - lets talk about code!
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yesterday today tomorrow
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We are working in Java so....

• No need to know the machine & your environment

• Use JDK Collections, they are fast

• Short Lived Objects are Free

• Great Data-Structures are Mutable

• Concurrency means Speed

• IO is trivial

• Method Calls are fast - there is a JIT, no?

• Unicode is there and it works
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Mechanical Sympathy (Jackie Steward / Martin Thompson)
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“The most amazing achievement of the 
computer software industry is its continuing 
cancellation of the steady and staggering 
gains made by the computer hardware 
industry.” Henry Peteroski
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Know your environment at scale - an example

• For Lucene Term      Posting-List lookups are crucial

• Speed is everything, we can do up to 600k key/value lookups per 
second (single box)

• We deal with Strings mainly (full Unicode Support)

• The main data-structure is a Sorted-Dictionary

• No internal caches anymore

• Large amount of concurrent reads
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The upper bound - not uncommon to reach!

•  274 Billion Unique Terms (Java Strings - 2 byte per Char)

• One entry (term, postingpointer, docFreq)

• At least one additional object per entry

• (numTerms * (objectHeader + postingspointer + docFreq + objectHeader
+ reference + average num Chars per String)) 

• (109 * (8byte + 8byte + 4byte + 8byte + 8byte + 10 bytes)) = 109 * 
46byte ~ 44GB

• You might have enough Heap Space, but how is your GC gonna like 
that? -> Remember 2 *109 Objects
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Where to focus on?
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Impact on GC

Space/CPU Utilization
Concurrency

Compression
Do we need 2 bytes per Character?

Any exploitable data properties

Amount of Objects (Long & Short Living)

JVM memory allocation

Cost & Need of a Multiple Writers Model

CPU Cache UtilizationCost of a Monitor / CAS

Need of mutability

Can we specialized a data-strucutres

Can we allow stack allocation?
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What we focus on...
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Impact on GC

Space/CPU Utilization
Concurrency

Compression
Materialize strings to bytes

Strings can share prefix & suffix

Data Structures with Constant number of objects 

Guarantee continuous memory allocation

Single Writer - Multiple Readers

Materialized Data structures for Java HEAP
Write, Commit, Merge

Write Once & Read - Only

Finite State Transducers / Machines

No Java Collections where scale is an issue

UTF-8 by default or custom encoding 

MemoryMap | NIO

Exploit FS / OS Caches

Prevent False Sharing
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Is all this necessary?

• Yes & No - it all depends on finding the hotspots

• Measure & Optimize for you use-case.

• Data-structures are not general purpose (like the don’t support 
deletes)

• Follow the 80 / 20 rule

• Enforce Efficiency by design

• Java Iterators are a good example of how not to do it!

• Remember you OS is highly optimized, make use of it!
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Enough high level - concrete problems please!

• Challenge: Idle is no-good!

• Challenge: One Data-Structure to rule them all?

• Challenge: How how to test a library

• Challenge: What’s needed for a 20000% performance improvement
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Challenge: Idle is no-good

• Building an index is a CPU & IO intensive task

• Lucene is full of indexes (thats basically all it does)

• Ultimate Goal is to scale up with CPUs and saturate IO at the same time

• Keep your code complexity in mind

• Other people might need to maintain / extend this

18

Don’t go crazy!
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Here is the problem
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WTF?
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A closer look...
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Our Solution 
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The Result
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Indexing Ingest Rate over time with Lucene 4.0 & DWPT Indexing 7 Million 
4kb wikipedia documents

vs. 620 sec on 3.x
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Challenge: One Data-Structure to Rule them all?

• Like most other systems writing datastructures to disk Lucene didn’t 
expose it for extension

• Major problem for researchers, engineers who know what they are doing

• Special use-cases need special solutions

• Unique ID Field usually is a 1 to 1 key to document mapping

• Holding a posting list pointer is a wasteful

• Term lookup + disk seek vs. Term lookup + read

• Research is active in this area (integer encoding for instance) 
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10000 ft view
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IndexWriter IndexReader

Directory
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Introducing an extra layer
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IndexWriter IndexReader

Flex API 

Directory

FileSystem

Codec
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For Backwards Compatibility you know?
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Using the right tool for the job..
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Switching to Memory PostingsFormat

27Wednesday, March 21, 2012



Using the right tool for the job..
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Switching to BlockTreeTermIndex
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Challenge: How to test a library 
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• A library typically has:

• lots of interfaces & abstract classes

• tons of parameters

• needs to handle user input gracefully

• Ideally we test all combinations of Interfaces, parameters and user 
inputs?

• Yeah - right!
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What’s wrong with Unit-Test

• Short answer: Nothing!

• But...

• 1 Run == 1000 Runs? (only cover regression?)

• Boundaries are rarely reached

• Waste of CPU cycles

• Test usually run against a single implementation

• How to test against the full Unicode-Range?
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An Example
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The method to test:

The test:

The result:

31Wednesday, March 21, 2012



Can it fail?
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It can! ...after 53139 Runs

• Boundaries are everywhere

• There is no positive value for Integer.MIN

• But how to repeat / debug?
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Solution: A Randomized UnitTest Framework

• Disclaimer: this stuff has been around for ages - not our invention!

• Random selection of:

• Interface Implementations

• Input Parameters like # iterations, # threads, # cache sizes, 
intervals, ...

• Random Valid Unicode Strings (Breaking JVM for fun and profit)

• Throttling IO 

• Random Low Level Data-Strucutures

• And many more...
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Make sure your unit tests fail - eventually!

• Framework is build for Lucene

• Currently factored out into a general purpose framework

• Check it out on: https://github.com/carrotsearch/randomizedtesting

• Wanna help the Lucene Project?

• Run our tests and report the failure!
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Challenge: What’s needed for a 20k% 
Performance improvement.

35

BEER!

FUN!COFFEE!
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The Problem: Fuzzy Search

• Retrieve all documents containing a given term within a Levenshtein 
Distance of <= 2

• Given: a sorted dictionary of terms 

• Trivial Solution: Brute Force - filter(terms, LD(2, queryTerm))

• Problem: it’s damn slow!

• O(t) terms examined, t=number of terms in all docs for that field. 
Exhaustively compares each term. We would prefer O(log2t) instead.

• O(n2) comparison function, n=length of term. Levenshtein dynamic 
programming. We would prefer O(n) instead.
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Solution: Turn Queries into Automatons

• Read a crazy Paper about building Levenshtein Automaton and 
implement it. (sounds easy - right?)

• Only explore subtrees that can lead to an accept state of some finite 
state machine.

• AutomatonQuery traverses the term dictionary and the state machine in 
parallel

• Imagine the index as a state machine that recognizes Terms and 
transduces matching Documents.

• AutomatonQuery represents a user’s search needs as a FSM.

• The intersection of the two emits search results
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Solution: Turn Queries into Finite State Machines
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Finite-State Queries in Lucene
Robert Muir

rmuir@apache.org

Example DFA for “dogs” Levenshtein Distance 1

\u0000-f, g ,h-n, o, p-\uffff

Accepts: “dugs”

d

o

g
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Turns out to be a massive improvement!
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In Lucene 3 this is about 0.1 - 0.2 QPS
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Berlin Buzzwords 2012
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• Conference on High-Scalability, NoSQL and Search

• 600+ Attendees, 50 Sessions, Trainings etc.

• Discount Code: 10% with “BB12-33DG” valid March 21st - March 25th
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Questions anybody?
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