ThoughtWorks Devtcchland

Wolf 501’\165_@[
March 2012

Who 1¢ ﬂ’\ovgb’l' Works?

Uspzoom revene

ThoughtWorks:

Interested in QOMG’H’\Mg_ oomleLcIv]
Vigit Join.fhough‘l'work,g.oom

Some H’\cow]
New kids¢ on the block
A lot of FVaoﬁ(/@

WVB){) up

Some. ﬂ’\cow] 1330 — 14:00
New kid¢ on the block 1400 — 14:30
All hands on deck 1430 — 16:30
WVB){) up 16:30 — 17.00

Fart 1
Some 1 hcorl/]

Whl/) Farallel progfamming?

Cvand oha”cngf/ Problcmé
Model| fng_ DNA ¢tructures
Weather forcoaéﬁ ng.

Farallel PVOgramming_ §P!i’r€ ProblanQ into Faﬂ’é
Farte are colved in Para”cl bb) mv!ﬁplc proce5sors

7 ThoughtWorks:

No more free luneh

Microprocessor Transistor Counts 1971-2011 & Moore’s Law

2,600,000,000
1,000,000,000

100,000,000

10,000,000

1,000,000

-
c
=]
o
(&)
=
L
K]
@
=
o
=

100,000

T T T T
1971 1980 1990 2000

Date of introduction

¥« Source: http://de.wikipedia.org/wiki/Mooresches_ Gesetz

8

ThoughtWorks:

F arﬁﬁoning ¢ d Vide—and—conquer

Data Parﬁﬁoningig applied to data (aka domain decompogition)
Functional olcoompogiﬁon concvrrent lv] execvtes indc{)cnolcn’l’ fvn(/’f long

Les¢ common than data {>3)V1Li1LiomiV|5r

Di\/iolc—anol—oon@/cr divides a FVoblcm mto <imilar gvb—Problcn/Ié
va—problcrm have the same form ag the origimal problcm

Can be Vcha'I'col recvriivel Y

o) ThoughtWorks:

Which Way S faster?

Split the
problem

Solve the

Solve partial
problem

problem

Merge results

10 ThoughtWorks:

Amdahl’s lan (1/3)

S = speedup factor S = function(n,f) where
n = number of processors/cores

f = fraction of the computation that cannot be parallelised

11 ThoughtWorks:

Amdahl’s law (2/3)

S = speedup factor = function(n,f) where
n = number of processors/cores

f =fraction of the computation that cannot be parallelised

s(n) single processor execution time n
n)= —
n processor execution time 1+ (n—1Df
lim S -
im = —
am Sn) = 2

12 ThoughtWorks:

Amdahl’s law (3/3)

S(n,f)

35

) / /
25 /
20 = S(n,f=0%)
/ = S(n,f=5%)
15 = S(n,f=10%)
/ //——- — S(n,f=20%)

10 /
/
= —
O T T T T T T T] n
o} 4 8 12 16 20 24 28 32

13 ThoughtWorks

How to benefit from multiple CFUg/cores in Javi

lmpli(/iﬂl/] — maé_i(/ done vnder the hood bl«] the JVM
@(Flidﬁl/} — uging,Ja\/a FaLs fork{)'oin framenork

Thi¢ ¢esCion foovécé on the fork()'oin framavvork,

14 ThoughtWorks:

Tect g fork{)oin

Accert that...

.. the core ooumLaﬁon works ag cxpco%col

... The oomplcfc tack worksS as cxPe/mLcol
5 QP!iﬁL ing. the tack does not (/OVVUP’I‘ MPWL data

mcrging reSults behaves ag cxPcmLool

15 ThoughtWorks:

T
New kid¢ on the block

New clag¢es on the block

Thread

T

ForkJoinWorkerThread

[Callable<V>]

[Executor]

A

[ExecutorService]

A

ForkJoinPool

[Future<V>]

A

ForkJoinTask<V>

|

|

RecursiveAction

RecursiveTask<V>

17

ThoughtWorks:

Anatomy of the fork{)oim interaction (1/2)

RecursiveAction RA1 [GiEEps ForkJoinTask

LT
Eu mw Ew E
=

Join RAL

Result

18 ThoughtWorks:

Anafomv] of the fork()'oin interaction (2/2)

WorkerThreadi | WorkerThread2

Queue Queue

RA1 RA2

Result

|

19 ThoughtWorks’

Fart 3
All hand¢ on deck

How to implcmcmL a ForkJoinT ask 5_6”61/&”‘/]

1f (my portion of the work is small enough)
do the work directly

else
split my work into two pieces and fork them

merge/join the results

21 ThoughtWorks:

A 5Lli01601 cxamplc: Calovlaﬁng checksumg

22

Sdﬁng up your environment

% Sources and slides are on the stick

% Follow the instructions in the README file

23 ThoughtWorks:

Exerci¢e 1: Bucket Sort

¥« Implement a sequential and a parallel version of bucket sort

29 25 3 49 9 37 21 43

% Put elements into buckets
that represent ranges

10-19 20-29

10-19 20-29 30-39 40-49

% Sort and concatenate buckets . @ @ . E
49

37 43 49

¥« Source: http://en.wikipedia.org/wiki/Bucket_sort

24 ThoughtWorks:

Exercise 1: Bucket Sort a¢ Pécvolo code

¥® function bucketSort (array, n) 1is
buckets « new array of n empty lists

for 1 = 0 to (length(array)-1) do
insert array[i] into buckets[whichBucket (array[i])]

for 1 = 0 ton - 1 do
nextSort (buckets[i])

return the concatenation of buckets[0], ..., buckets[n-1]

¥« Source: http://en.wikipedia.org/wiki/Bucket_sort

25 ThoughtWorks:

Exercice 1: One way to realise bucket Sort

ISorter IBucketSortHelper
public List<T> sort(List<T> list) public void sortBuckets(SortedMap<T, List<T>> buckets)
[[[[
i ; ; ;
i Sequential ActionBased TaskBased
BucketSortHelper | | BucketSortHelper BucketSortHelper
BucketSorter
\ \
ParallelBucket ParallelBucket
SortAction SortTask

26 ThoughtWorks:

Exerciée 2 T—vningﬂﬂe/ Farallcl bucket Sort

¥ Buckets of equal width work well when the list to sort is evenly
populated

¥* When the distribution of elements is skewed, the parallel
bucket sort may degrade (why?)

¥« Run your parallel bucket sort with different kinds of lists (i.e.
evenly populated ones and skewed ones)

¥ Improve the performance of your parallel bucket sort if
required

27 ThoughtWorks:

Exercise 3 M@Vg@ Cort

* Implement a sequential and a parallel version of 38 [27] 433] o [a2 | 10]
merge sort

« Ifthelist is of length 0 or 1 the list is already
sorted

 Divide the unsorted list into two sublists of
about half the size

« Sort each sublist recursively by re-applying the
merge sort

« Merge the two sublists back into one sorted list

Sl [e[s [

¥« Source: http://en.wikipedia.org/wiki/Merge_ sort

28 ThoughtWorks:

Exerciée 3. /\/\6}/5_6 Sort ag Féevdo

code (1/2)

function merge sort (m)
if length(m) < 1
return m
var list left, right, result

var integer middle = length (m) /
for each x in m up to middle
add to left

X
for each x in m after or equal middle
X

add to right

left = merge sort(left)
right = merge sort (right)
result = merge(left, right)

return result

209 Source: http://en.wikipedia.org/wiki/Merge_sort

ThoughtWorks:

Exerciée 3. /\/\CVg_C Sort ag Féevdo code (2/ Z)

function merge (left, right)
var list result
while length(left) > 0 or length(right) >
if length(left) > 0 and length(right)
if first(left) £ first(right)
append first(left) to result
left = rest(left)
else
append first(right) to result
right = rest(right)
else if length(left) > 0
append first(left) to result
left = rest(left)
else if length(right) > 0
append first(right) to result
right = rest(right)
end while
return result

0
> 0

30 Source: http://en.wikipedia.org/wiki/Merge_sort

ThoughtWorks:

Exevcie 4 Scaw/hing thingg in text files

* Implement a parallel search for a string in a text file

¥ The search string can be assumed to contain no whitespace (i.e. no
spaces or tabs)

¥« Have a look at the following class:
com.thoughtworks.fjw.search.SimpleStringSearchTest

* The class contains examples for string based searching and
reading from a text file

31 ThoughtWorks:

Exerci¢e S Scarohing_ thingg reviSited

¥ Revisit your solution for the previous exercise

¥« Drop the assumption so that search strings can contain

whitespace

¥ Consider how dropping the assumption affects the way you
partition the text to search

32 ThoughtWorks:

Fart 4
WVaP up

Thanks fo Fabian for oo—-avfhoring, the WorkéhoP

B. Wilkingon & M. Allen: Farallel Frogramming,
Frentice Hall, New Jercey 1999

Thank hov

How can we hclp?

ThoughtWorks is a global custom software solutions
consultancy trusted by many of the world’s leading
businesses with their most complex and critical systems.

We deliver consulting grounded in delivery expertise,
build custom applications and help organisations across
all market sectors to drive IT efficiency — working to an
exceptionally high standard.

Contact u¢

Wolf Schlegel

+49 173 543 7465
wolf.schlegel @thoughtworks.com

www.thoughtworks.com

ThoughtWorks:

Ea&lﬁlp ¢lides

Amdahl’s law (3/3)

S(n,f)

35

) / /
25 /
20 = S(n,f=0%)
/ = S(n,f=5%)
15 = S(n,f=10%)
/ //——- — S(n,f=20%)

10 /
/
= —
O T T T T T T T] n
o} 4 8 12 16 20 24 28 32

38 ThoughtWorks

Amdahl’s law (3/3)

S(n,f)

35

30 /
25 /
20 — S(n,f=0%)
/ - S(n,f=5%)
15 == S(n,f=10%)
/ ________ S0 f=20%)

39 ThoughtWorks’

Thread ¢tate oliagram

- Object_notify() or Object.notifyAll()

Ready-1o-run Waiting
Chosen by scheduler

P4\

Object.wait()

Scheduler swap or Thread.yield() \ Thread sleep()

Runnable_run() exits

Enters synchronized code (or blocks for 10)

Blocked

Terminated

O Another thread doses socket

Lock obtained (or data received)

40 ThoughtWorks

