
Deutschland

Parallel Programming
with Java 7

Wolf Schlegel
March 2012

Who is ThoughtWorks?

20+ offices
8 countries

1800+ people

On & off shore

US$200m revenue

Interested in something completely different?
Visit join.thoughtworks.com

Some theory
New kids on the block
A lot of practice
Wrap up

Some theory 13:30 – 14:00
New kids on the block 14:00 – 14:30
All hands on deck 14:30 – 16:30
Wrap up 16:30 – 17:00

Part 1
Some theory

Why parallel programming?

Grand challenge problems
Modelling DNA structures
Weather forecasting

Parallel programming splits problems into parts
Parts are solved in parallel by multiple processors

7

No more free lunch

!   Source: http://de.wikipedia.org/wiki/Mooresches_Gesetz

8

Partitioning & divide-and-conquer

Data partitioning is applied to data (aka domain decomposition)
Functional decomposition concurrently executes independent functions

Less common than data partitioning

Divide-and-conquer divides a problem into similar sub-problems
Sub-problems have the same form as the original problem
Can be repeated recursively

9

Which way is faster?

10

Solve the
problem

Split the
problem

Merge results

Solve partial
problem Solve partial

problem Solve partial
problem Solve partial

problem Solve partial
problem

or

Amdahl’s law (1/3)

 S = speedup factor S = function(n,f) where

n = number of processors/cores

f = fraction of the computation that cannot be parallelised

11

Amdahl’s law (2/3)

 S = speedup factor = function(n,f) where

n = number of processors/cores

f = fraction of the computation that cannot be parallelised

12

Amdahl’s law (3/3)

13

S(n,f)

n

How to benefit from multiple CPUs/cores in Java

Implicitly – magic done under the hood by the JVM
Explicitly – using Java 7’s fork/join framework

This session focuses on the fork/join framework

14

Testing fork/join

Assert that…
… the core computation works as expected
… the complete task works as expected

… splitting the task does not corrupt input data

… merging results behaves as expected

15

Part 2
New kids on the block

New classes on the block

17

Callable<V>

ForkJoinTask<V>

RecursiveTask<V> RecursiveAction

Future<V>

ForkJoinWorkerThread

Thread

ForkJoinPool

Executor

ExecutorService

Anatomy of the fork/join interaction (1/2)

18

ForkJoinTask RecursiveAction RA1

RA4 RA5 RA6 RA7

Fork

Join Result RA1

RA2 RA3

RA2 RA3

Anatomy of the fork/join interaction (2/2)

19

ForkJoinTask RecursiveAction RA1

RA4 RA5 RA6 RA7

Fork

Join Result RA1

RA2 RA3

RA2 RA3

ForkJoinPool

WorkerThread2 WorkerThread1

Queue

RA1

RA2

RA3

Queue

RA2

Part 3
All hands on deck

How to implement a ForkJoinTask generally

21

if (my portion of the work is small enough)

 do the work directly

else

 split my work into two pieces and fork them

 merge/join the results

A guided example: Calculating checksums

22

Setting up your environment

!   Sources and slides are on the stick

!   Follow the instructions in the README file

23

Exercise 1: Bucket sort

!   Implement a sequential and a parallel version of bucket sort

!   Put elements into buckets
that represent ranges

!   Sort and concatenate buckets

!   Source: http://en.wikipedia.org/wiki/Bucket_sort

24

Exercise 1: Bucket sort as pseudo code

!   function bucketSort(array, n) is
 buckets ← new array of n empty lists

 for i = 0 to (length(array)-1) do
 insert array[i] into buckets[whichBucket(array[i])]

 for i = 0 to n - 1 do

 nextSort(buckets[i])

 return the concatenation of buckets[0], ..., buckets[n-1]

!   Source: http://en.wikipedia.org/wiki/Bucket_sort

25

Exercise 1: One way to realise bucket sort

26

ISorter
public List<T> sort(List<T> list)

BucketSorter

IBucketSortHelper
public void sortBuckets(SortedMap<T, List<T>> buckets)

Sequential
BucketSortHelper

ActionBased
BucketSortHelper

TaskBased
BucketSortHelper

ParallelBucket
SortAction

ParallelBucket
SortTask

Exercise 2: Tuning the parallel bucket sort

!   Buckets of equal width work well when the list to sort is evenly
populated

!   When the distribution of elements is skewed, the parallel
bucket sort may degrade (why?)

!   Run your parallel bucket sort with different kinds of lists (i.e.
evenly populated ones and skewed ones)

!   Improve the performance of your parallel bucket sort if
required

27

Exercise 3: Merge sort

!   Implement a sequential and a parallel version of
merge sort

•  If the list is of length 0 or 1 the list is already
sorted

•  Divide the unsorted list into two sublists of
about half the size

•  Sort each sublist recursively by re-applying the
merge sort

•  Merge the two sublists back into one sorted list

!   Source: http://en.wikipedia.org/wiki/Merge_sort

 28

Exercise 3: Merge sort as pseudo code (1/2)

Source: http://en.wikipedia.org/wiki/Merge_sort 29

function merge_sort(m)
 if length(m) ≤ 1
 return m
 var list left, right, result
 var integer middle = length(m) / 2
 for each x in m up to middle
 add x to left
 for each x in m after or equal middle
 add x to right

 left = merge_sort(left)
 right = merge_sort(right)
 result = merge(left, right)

 return result

Exercise 3: Merge sort as pseudo code (2/2)

Source: http://en.wikipedia.org/wiki/Merge_sort 30

function merge(left,right)
 var list result
 while length(left) > 0 or length(right) > 0
 if length(left) > 0 and length(right) > 0
 if first(left) ≤ first(right)
 append first(left) to result
 left = rest(left)
 else
 append first(right) to result
 right = rest(right)
 else if length(left) > 0
 append first(left) to result
 left = rest(left)
 else if length(right) > 0
 append first(right) to result
 right = rest(right)
 end while
 return result

Exercise 4: Searching strings in text files

!   Implement a parallel search for a string in a text file

!   The search string can be assumed to contain no whitespace (i.e. no
spaces or tabs)

!   Have a look at the following class:

com.thoughtworks.fjw.search.SimpleStringSearchTest

•  The class contains examples for string based searching and
reading from a text file

31

Exercise 5: Searching strings revisited

!   Revisit your solution for the previous exercise

!   Drop the assumption so that search strings can contain
whitespace

!   Consider how dropping the assumption affects the way you
partition the text to search

32

Part 4
Wrap up

Thanks to Fabian for co-authoring the workshop

B. Wilkinson & M. Allen: Parallel Programming,
Prentice Hall, New Jersey 1999

Thank you

Contact us
Wolf Schlegel

+49 173 543 7465
wolf.schlegel@thoughtworks.com

www.thoughtworks.com

How can we help?
ThoughtWorks is a global custom software solutions
consultancy trusted by many of the world’s leading

businesses with their most complex and critical systems.

 We deliver consulting grounded in delivery expertise,
build custom applications and help organisations across
all market sectors to drive IT efficiency – working to an

exceptionally high standard.

Backup slides

Amdahl’s law (3/3)

38

S(n,f)

n

Amdahl’s law (3/3)

39

S(n,f)

n

Thread state diagram

40

